Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada.

نویسندگان

  • N F Spycher
  • E L Sonnenthal
  • J A Apps
چکیده

The evolution of fluid chemistry and mineral alteration around a potential waste emplacement tunnel (drift) is evaluated using numerical modeling. The model considers the flow of water, gas, and heat, plus reactions between minerals, CO(2) gas, and aqueous species, and porosity-permeability-capillary pressure coupling for a dual permeability (fractures and matrix) medium. Two possible operating temperature modes are investigated: a "high-temperature" case with temperatures exceeding the boiling point of water for several hundred years, and a "low-temperature" case with temperatures remaining below boiling for the entire life of the repository. In both cases, possible seepage waters are characterized by dilute to moderate salinities and mildly alkaline pH values. These trends in fluid composition and mineral alteration are controlled by various coupled mechanisms. For example, upon heating and boiling, CO(2) exsolution from pore waters raises pH and causes calcite precipitation. In condensation zones, this CO(2) redissolves, resulting in a decrease in pH that causes calcite dissolution and enhances feldspar alteration to clays. Heat also enhances dissolution of wall rock minerals leading to elevated silica concentrations. Amorphous silica precipitates through evaporative concentration caused by boiling in the high-temperature case, but does not precipitate in the low-temperature case. Some alteration of feldspars to clays and zeolites is predicted in the high-temperature case. In both cases, calcite precipitates when percolating waters are heated near the drift. The predicted porosity decrease around drifts in the high-temperature case (several percent of the fracture volume) is larger by at least one order of magnitude than in the low temperature case. Although there are important differences between the two investigated temperature modes in the predicted evolution of fluid compositions and mineral alteration around drifts, these differences are largely within to the model uncertainty and the variability of water compositions at Yucca Mountain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling acid-gas generation from boiling chloride brines

BACKGROUND This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and ...

متن کامل

Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain.

A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermomechanically ...

متن کامل

Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground openings in unsaturated media might act as capillary barrie...

متن کامل

Implementation of a Pitzer Activity Model into Toughreact for Modeling Concentrated Solutions

TOUGHREACT (Xu et al., 2006) is a generalpurpose reactive geochemical transport numerical simulator. It deals with multiphase flow, solute transport and geochemical reactions including aqueous complexation, mineral dissolution/ precipitation and cation exchange. Making use of an extended Debye-Hückel ion activity model, this simulator can handle solutions concentrated to slightly above ~1 molal...

متن کامل

Characterization of flow and transport processes within the unsaturated zone of Yucca Mountain, Nevada, under current and future climates.

This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a potential repository site for storing high-level radioactive waste. The study has been conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 62-63  شماره 

صفحات  -

تاریخ انتشار 2003